Removing Salt From Coal Mine Wastewater in a Remote, Wet Area: Full Scale Experience

Srikanth Muddasani, P.E.
Veolia Water Technologies, USA
Centralized ZLW treatment facility to handle water from six mine locations

All six mines located within Monongahela River Basin

Regulatory driver = Chlorides to < 218 mg/L

Solid wastes generated are disposed in on-site landfill

Treated effluent is discharged to creek and/or used as frac water
Contributing Mine Locations

18” Force Main collects water from 4 mines to the North

14” Force Main collects water from 2 mines to the South
The Project

• Centralized ZLW treatment facility is designed to treat 5 MGD (795 m³/h) of mine water

• Mine water, pretreated for metals removal where needed, conveyed from six source points to the facility through 32 miles of pipeline

• Executed through a Design-Build-Operate contract with Veolia

• June 2010 - Request for proposals issued

• April 2011 - Project awarded

• July 2011 - Construction began

• May 2013 - Full operation
Design Basis - Influent Mine Water

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Original Design</th>
<th>Current Design¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Flow, gpm</td>
<td>3500 (795 m³/h)</td>
<td>2026 (460 m³/h)</td>
</tr>
<tr>
<td>pH, S.U.</td>
<td>5 - 10</td>
<td>7.39</td>
</tr>
<tr>
<td>Temperature, deg F</td>
<td>38 – 85 (3 – 30 deg C)</td>
<td>60 – 72 (15-22 deg C)</td>
</tr>
<tr>
<td>Calcium, mg/L</td>
<td>300</td>
<td>217</td>
</tr>
<tr>
<td>Magnesium, mg/L</td>
<td>200</td>
<td>104</td>
</tr>
<tr>
<td>Iron, mg/L</td>
<td>150</td>
<td>0.27</td>
</tr>
<tr>
<td>Manganese, mg/L</td>
<td>2</td>
<td>0.27</td>
</tr>
<tr>
<td>Alkalinity, mg/L CaCO₃</td>
<td>700 - 1200</td>
<td>891</td>
</tr>
<tr>
<td>Sulfate, mg/L</td>
<td>5,500</td>
<td>2700²</td>
</tr>
<tr>
<td>Chloride, mg/L</td>
<td>1,500</td>
<td>1530²</td>
</tr>
<tr>
<td>TDS, mg/L</td>
<td>10,000</td>
<td>8600</td>
</tr>
<tr>
<td>Silica, mg/L as SiO₂</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Note 1: Average Value based on the data collected between Jun 1st 2014 to Dec 31st 2014
Note 2: Average Value based on the data collected between Aug 20th, 2014 to Sep 5th, 2014
Effluent Water Quality Requirements

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Maximum Effluent Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorides, mg/L</td>
<td>< 218</td>
</tr>
<tr>
<td>TDS, mg/L</td>
<td>< 150 (^1)</td>
</tr>
<tr>
<td>pH, S.U.</td>
<td>6 to 9</td>
</tr>
<tr>
<td>Minimum Hardness, mg/l as CaCO(_3)</td>
<td>≥ 50</td>
</tr>
</tbody>
</table>

Note 1: Applied to product water prior to remineralization
The Process: Three Primary Components

- Raw Water Pretreatment System
- Reverse Osmosis System
- Thermal Brine Management System
Primary Objectives
1. Remove TDS and Chlorides
2. Zero Liquid Waste
Facility Overview

- Lime & Soda Ash Silos
- Multimedia Filters
- RO Trains
- Evaporator
- Crystallizer
- Raw Water Tank
- Softening System
- 1st Stage Clarifier
- Dewatering Building
Chemical Softening System

- Multi-stage process
- Two aeration tanks for precipitation of metals such as manganese and iron
- Crystallization tank for removal of alkalinity and hardness
- Draft-tube reactor design
 - Solids recycle
 - Reduce chemical consumption
 - Enhance particle growth and settling characteristics
- Conventional circular clarifier design
Multimedia Filter System

- Removes residual suspended solids in the effluent from upstream clarification and aluminum precipitation processes
- Backwash water is returned to the Raw Water Feed Tank
The Process Flow - RO System

Reverse Osmosis System

- RO Feed Tank, followed by Cartridge Filtration
- RO Skids designed to achieve chloride and TDS specifications while operating at a high recovery rate
 - Five parallel skids, each sized to handle 25% of the design flow, 1 standby
 - Thirty-one pressure vessels per skid, each with seven seawater RO membrane elements
- Permeate flows to Product Water Tank, which also collects distillate from Brine Management System
 - Prior to discharge, the Product Water Tank effluent is re-mineralized using carbon dioxide and lime water, to protect aquatic life
 - Discharged to creek, or to a truck loading station for reuse in energy-related operations.
- Reject is sent to the thermal Brine Management System
Evaporator

- Concentric falling film unit is divided into two sections with a low concentration side and a high concentration side
 - Split design to reduce overall power consumption by allowing a portion of the evaporation to occur at a lower boiling point rise than the final concentration
- Evaporator operates as a Mechanical Vapor Recompression System
 - Recycle of hot vapor in the system; minimize auxiliary steam
- Distillates from the Evaporator and Crystallizer are pumped through a Feed Preheater for heat transfer to the incoming brine
 - Heat exchanger for efficient energy utilization
Crystallization

- Crystallizer includes a vapor body, recirculation pump, and forces circulation heat exchanger
 - Vapors created by concentrating the slurry in the Crystallizer are recompressed and recirculated through the heater
 - As the brine concentration increases, the solution becomes supersaturated and salts precipitate, resulting in a brine slurry
 - A slip stream of the crystallizer slurry is sent to centrifuges for dewatering
- The result: Zero Liquid Waste
 - Dewatered salt cake is disposed in the on-site landfill along with the dewatered sludge from the softening processes
Thermal Brine Management System

- Heat Exchanger
- Crystallizer
- Evaporator
- Distillate Tank
• Dewatered Salt and Softening Sludge is brought separately to onsite landfill

• Dewatered Salt contains approximately 90 – 95% in solids concentration and Sludge contains 50 – 65% in solids concentration.

• Both passes paint filter press test

• Both Salt and Sludge are mixed before applied to landfill

• Leachate generated in landfill is collected in storage tank and metered back to thermal system
Ancillary Support Systems

• Chemical Storage and Feed Systems
• Lime Water Preparation System
• RO Membrane Clean-in-Place System
• Compressed Air System
• Electrical and Control Rooms
• Laboratory
• Communications Equipment
• Maintenance and Storage Areas
• Personnel Amenities
Feed Water Conductivity

Original Design Conductivity = 13,000 µs/cm
Current Avg Conductivity = 11,180 µs/cm
Product Water Conductivity

Product water Cond before Remineralization = 63 µs/cm

Final Effluent Discharge Cond = 142 µs/cm
Feed Water Chlorides

Current Avg Feed Chlorides = 1,530 mg/l
Final Effluent Chlorides

- **Final Effluent Chlorides** = 16 mg/l
Please Note:
- Waste Estimation for design condition was estimated based on 3500 gpm flow
- Waste Estimation for Current Average Condition was estimated based on 2026 gpm flow

Estimated Waste Generation

<table>
<thead>
<tr>
<th>Waste</th>
<th>Design Condition</th>
<th>Current Average Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softening Sludge (on a 100% dry basis)</td>
<td>6,666 lb/hr (3,030 kg/hr)</td>
<td>2,200 lb/hr (1,000 kg/hr)</td>
</tr>
<tr>
<td>Salt (on a 100% dry basis)</td>
<td>17,500 lb/hr (7,954 kg/hr)</td>
<td>8,710 lb/hr (3,960 kg/hr)</td>
</tr>
<tr>
<td>Total Waste Generated (on 100% dry basis)</td>
<td>24,166 lb/hr (10,984 kg/hr)</td>
<td>10,910 lb/hr (4,960 kg/hr)</td>
</tr>
</tbody>
</table>
Summary

- Treatment process achieves > 99% removal of chlorides using state-of-the-art membrane technology
- Energy efficient evaporation and crystallization technology for brine management
- Solid waste generated onsite is disposed into onsite landfill and leachate generated at the landfill is sent back to the facility’s thermal treatment process
- Since no liquid waste leaves the property, this facility is termed as a “zero liquid waste” (ZLW) facility
Thank You!